Sortable Elements for Quivers with Cycles
نویسندگان
چکیده
Each Coxeter element c of a Coxeter group W defines a subset of W called the c-sortable elements. The choice of a Coxeter element of W is equivalent to the choice of an acyclic orientation of the Coxeter diagram of W . In this paper, we define a more general notion of Ω-sortable elements, where Ω is an arbitrary orientation of the diagram, and show that the key properties of c-sortable elements carry over to the Ω-sortable elements. The proofs of these properties rely on reduction to the acyclic case, but the reductions are nontrivial; in particular, the proofs rely on a subtle combinatorial property of the weak order, as it relates to orientations of the Coxeter diagram. The c-sortable elements are closely tied to the combinatorics of cluster algebras with an acyclic seed; the ultimate motivation behind this paper is to extend this connection beyond the acyclic case.
منابع مشابه
A Cambrian Framework for the Oriented Cycle
This paper completes the project of constructing combinatorial models (called frameworks) for the exchange graph and g-vector fan associated to any exchange matrix B whose Cartan companion is of finite or affine type, using the combinatorics and geometry of Coxeter-sortable elements and Cambrian lattices/fans. Specifically, we construct a framework in the unique non-acyclic affine case, the cyc...
متن کاملClusters, Coxeter-sortable Elements and Noncrossing Partitions
We introduce Coxeter-sortable elements of a Coxeter group W. For finite W, we give bijective proofs that Coxeter-sortable elements are equinumerous with clusters and with noncrossing partitions. We characterize Coxeter-sortable elements in terms of their inversion sets and, in the classical cases, in terms of permutations.
متن کاملSortable Elements in Infinite Coxeter Groups
In a series of previous papers, we studied sortable elements in finite Coxeter groups, and the related Cambrian fans. We applied sortable elements and Cambrian fans to the study of cluster algebras of finite type and the noncrossing partitions associated to Artin groups of finite type. In this paper, as the first step towards expanding these applications beyond finite type, we study sortable el...
متن کاملUniversal Derived Equivalences of Posets of Tilting Modules
We show that for two quivers without oriented cycles related by a BGP reflection, the posets of their tilting modules are related by a simple combinatorial construction, which we call flip-flop. We deduce that the posets of tilting modules of derived equivalent path algebras of quivers without oriented cycles are universally derived equivalent.
متن کاملUniversal Derived Equivalences of Posets of Cluster Tilting Objects
We show that for two quivers without oriented cycles related by a BGP reflection, the posets of their cluster tilting objects are related by a simple combinatorial construction, which we call a flip-flop. We deduce that the posets of cluster tilting objects of derived equivalent path algebras of quivers without oriented cycles are universally derived equivalent. In particular, all Cambrian latt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 17 شماره
صفحات -
تاریخ انتشار 2010